Applied Statistical Software
Code: 53916
ECTS: 5.0
Lecturers in charge: doc. dr. sc. Dario Pavić
Take exam: Studomat
English level:

1,0,0

All teaching activities will be held in Croatian. However, foreign students in mixed groups will have the opportunity to attend additional office hours with the lecturer and teaching assistants in English to help master the course materials. Additionally, the lecturer will refer foreign students to the corresponding literature in English, as well as give them the possibility of taking the associated exams in English.
Load:

1. komponenta

Lecture typeTotal
Lectures 15
Exercises 60
* Load is given in academic hour (1 academic hour = 45 minutes)
Description:
Course description
The aim of the course is to prepare students for using the SPSS statistical software system. This includes independent data entry, selection of appropriate statistical methods, their implementation and interpretation of the results.

e-learning level 1
english level 1

Competency
Improve the ability to apply knowledge in practice.
Develop specific analytical and research skills.
Be able to effectively collect data and manage information.
Be able to effectively analyze social phenomena.
Develop team work and interpersonal skills.
Develop the ability to work independently.
Develop problem-solving skills.
Develop a concern for the quality of scientific the research.
Acquire specialized knowledge necessary to perform research activities within the social sciences and further training.
Be able to effectively carry out research and organize time.
Be able to effectively manage research projects.

Learning Outcomes
1. Prepare data for statistical analysis using SPSS statistical software,
2. Modify the data for statistical analysis, depending on the chosen statistical method,
3. Choose an appropriate statistical method for analyzing data,
4. Apply statistical analysis in an environment of SPSS,
5. Explain the results obtained by statistical analysis with the help of SPSS statistical software,
6. Write a report on the results of statistical analysis.


Week plan
1. Repetition of basic statistical concepts
2. Introduction to SPSS environment, data entry
3. Modifying data, variables and their attributes.
4. Graphic data in SPSS types of graphs, proper use of graphic display, depending on the nature and type of data
5. Methods of sampling and measures of descriptive statistics (measures of central tendency, measures of dispersion)
6. Comparing the means of two groups (t-test), the assumption of t-test.
7. Non-parametric tests for comparing the means of two groups
8. Simple models of analysis of variance (ANOVA)
9. Repeated measures ANOVA, mixed design
10. Repeat for the colloquium. The first test, in the exercise period.
11. Correlation and linear regression models
12. Advanced models of regression analysis (categorical predictors)
13. Non-parametric tests and analysis of categorical data
14. Analysis assumptions of ANOVA repeated measurements and regression analysis
15. Repeat for the Colloquium


Grading
Student evaluation is based on the results of two written exams conducted during class or written exam in the exam period.
Literature:
  1. Literatura:
    Field, A. (2009). Discovering statistics using SPSS, London: Sage (izabrana poglavlja).
1. semester Not active
SOC-dipl (4469): Izborni kolegiji - Mandatory smjer - Teaching Stream

2. semester
SOC-dipl (4421): Izborni kolegiji u 2. semestru (ZN-smjer) - Mandatory smjer - Science Stream
SOC-dipl (4469): Izborni kolegiji - Mandatory smjer - Teaching Stream

3. semester Not active
SOC-dipl (4469): Izborni kolegiji - Mandatory smjer - Teaching Stream
Consultations schedule:
  • doc. dr. sc. Dario Pavić :

    Office hours on Wednesdays, 14.45 to 15.45 hours (2.45 PM to 3.45 PM)

    Location:
News

Informations

Hrvatski studiji Sveučilišta u Zagrebu pokrenuti su i ustrojeni 16. studenoga 1992., isprva samo kao dvosemestralni Sveučilišni komparativni studij hrvatske filozofije i društva. Taj je program potom preoblikovan u program redovitog četverogodišnjeg studija.

Address: Borongajska cesta 83d, Zagreb (map)
© 2013. - 2019. Sveučilište u Zagrebu Hrvatski studiji. Sva prava pridržana. Webmaster
powered by QuiltCMS